THE WITTIG REACTION OF NON-STABILIZED PHOSPHORUS YLIDES AND AROMATIC ALDEHYDES. STUDIES ON ERYTHRO AND THREO B-HYDROXYPHOSPHONIUM SALTS AND THE PROMOTION OF STEREOCHEMICAL DRIFT BY SYNERGISM BETWEEN DIASTEREOMERS

Bruce E. Maryanoff* and Allen B. Reitz Chemical Research Department, McNeil Pharmaceutical Spring House, Pennsylvania 19477 USA

Abstract: In deprotonation studies with isomerically pure erythro-3 and threo-3, "retro-Wittig" reaction was only detected for erythro-3. Mixtures of erythro-3 and threo-3, under lithium salt-free conditions, undergo stereochemical drift because of synergism between diastereomeric oxaphosphetanes cis-2 and trans-2 during their decomposition to alkenes.

Recently, we have observed¹ individual cis and trans oxaphosphetanes in the Wittig reaction of non-stabilized phosphorus ylides and aldehydes by 145.8-MHz ³¹P and 90.5-MHz ¹³C NMR.² At low temperatures, the time course for all major species in representative Wittig reactions was monitored to obtain relative rates for the various reaction pathways.^{1c} For example. in the reaction of butylidenetriphenylphosphorane (1) and benzaldehyde (PhCHO) the following relative rate constants (10^{-5} s^{-1}) were assessed from $3^{1} \text{P/}^{1} \text{H}$ NMR measurements and computational analysis: $k_3 = 13.9$, $k_4 = 0.93$, $k_5 = 4.8$, $k_6 = 7.9$. The "stereochemical drift" observed, that is the production of more \underline{E} alkene relative to the amount of trans oxaphosphetane present

initially, was attributed to enhanced reversibility of <u>cis-2</u> relative to <u>trans-2</u>, in this case a factor of ca. 15. We noted,³ however, that there is a substantial uncertainty in the k_4 value, because of inherent error in the NMR measurements, which could lead to a distortion of the k_2/k_4 ratio.

To examine further the area of reversibility and stereochemical drift, we have conducted a series of decomposition and decomposition-crossover experiments on diastereomerically pure Wittig intermediates, and on deliberately prepared mixtures, by deprotonation of the corresponding β -hydroxyphosphonium salts, <u>erythro-3</u> and <u>threo-3</u>. Schlosser and coworkers⁴ were the first to use β -hydroxyphosphonium salts as precursors to Wittig intermediates. Their work on a related pair of such salts indicated substantial stereoisomerization of the erythro salt after deprotonation with a lithium base^{4a} and minor crossover with <u>m</u>-chlorobenzaldehyde.^{4b} In reasonable accord with Schlosser's experiments,⁴ we find on deprotonation that {1} pure <u>threo-3</u> experiences no stereochemical drift while <u>erythro-3</u> does to some degree, more so with Li present; and {2} pure <u>threo-3</u> does not afford crossed products with 4-chlorobenzaldehyde while <u>erythro-3</u> does, more so with Li present. Additionally, we have discovered that stereo-chemical drift is enhanced, in a concentration-dependent manner, when <u>erythro-3</u> is deproton-ated with a substantial amount of <u>threo-3</u> (even in the absence of Li salt!!). These results suggest that <u>cis-2</u> is much more prone to reversal than <u>trans-2</u>, a feature illustrated in our earlier kinetic studies but probably underestimated in the computational analysis.^{1C}

Isomerically pure <u>erythro-3</u> and <u>threo-3</u> (both >99% stereochemically pure by 360-MHz ¹H NMR and 90.5-MHz ¹³C NMR; structure of <u>threo-3</u> was confirmed by X-ray analysis) were separately deprotonated and the resultant intermediates (oxaphosphetanes at some stage)^{1a} were allowed to decompose either alone or in the presence of 4-chlorobenzaldehyde (crossover experiment). The results of these experiments are collected in the Table (entries 1-9).

With NaHMDS in THF at 23°C, <u>threo-3</u> led to olefin with complete retention of stereochemistry and <u>erythro-3</u> resulted in a very slight loss of stereochemical integrity (entries 2 and 1); however, with LiHMDS <u>erythro-3</u> showed substantial stereochemical drift to <u>E-4</u> while <u>threo-</u> 3 faithfully retained the original stereochemistry (entries 3 and 4). This is consistent with reversibility through carbon-carbon bond cleavage ("retro-Wittig" reaction) insofar as cis-2 (from <u>erythro-3</u>) is expected to produce some <u>trans-2</u> before its complete decomposition to alkene.^{1C} But, it is curious that pure <u>trans-2</u> (from <u>threo-3</u>) gives only the <u>E</u> alkene, revealing no reversal. (If <u>trans-2</u> were to revert to ylide 1 and PhCHO to an appreciable degree, then <u>cis-2</u> and <u>Z</u> alkene, <u>Z-4</u>, would be formed in the recombination process.) In this regard it is notable that PhCHO, which has to arise from "retro-Wittig" reaction, was detected and quantitated (GLC and GLC/MS) in the reactions of <u>erythro-3</u> but not those of <u>threo-</u> 3. Even deprotonation of <u>erythro-3</u> under lithium salt-free conditions, with NaHMDS, created a small quantity (3%) of PhCHO along with alkenes <u>4</u> (92% yield; <u>Z/E</u> = 97:3, reflecting a very small amount of stereochemical drift).

Crossover experiments were conducted with pure salts <u>erythro-3</u> and <u>threo-3</u> (entries 5-9). After deprotonation at -78°C in THF, excess 4-chlorobenzaldehyde (4 mol equiv) was added to trap any ylide 1 formed by reversal, then the mixture was allowed to warm slowly to room temperature.⁵ In this way <u>cis-2</u> and <u>trans-2</u> were generated exclusive of each other (verified by low temperature ³¹P NMR for the Na reaction)^{1a} without any excess aldehyde or ylide present, as there often is in direct Wittig condensations. <u>Erythro-3</u>, but not <u>threo-3</u>, gave mixtures of expected and crossed products with either LiHMDS or NaHMDS. Additionally, PhCHO was detected (GLC) only in the reactions of <u>erythro-3</u>. The minor amount of alkene <u>E-4</u> in the lithium-base crossover experiment of <u>erythro-3</u> ($\underline{Z}/\underline{E} = 96:4$), compared to the lithium-base decomposition experiment (entry 3), is partly attributable to the low decomposition temperature (ca. -20°C) in the former case; however, excess aldehyde may also play a role, as suggested by Schlosser^{4b} for a related stereochemical discrepancy. <u>Threo-3</u> did not furnish any crossover products and showed absolutely no stereochemical drift away from <u>trans-2</u> (³¹P NMR of Na reaction)^{1a} or <u>E-4</u> during decomposition. In a mixed crossover experiment (entry 9) stereochemical drift was enhanced and crossed products were generated with expected <u>Z/E</u> ratios.

From this data, <u>trans-2</u> does not appear to undergo "retro-Wittig" reaction, whereas <u>cis-2</u> does. In our kinetic investigation we had concluded that the rate of conversion of <u>cis-2</u> to ylide 1 and PhCHO was 7-15 times as fast as that for <u>trans-2</u>,^{1c} although the standard deviation for rate constant k_4 was fairly large.³ The crossover results demonstrate that oxaphos-phetane <u>cis-2</u> reverts much faster than oxaphosphetane <u>trans-2</u>; also, reversion of <u>trans-2</u> (k_4) must be much slower (at least by a factor of 20) than its decomposition to alkene <u>E-4</u> (k_6).

Mixtures of <u>erythro</u>- and <u>threo</u>-3 show stereochemical drift to alkene mixtures inordinately enriched in <u>E</u> isomer, without the presence of Li salt (entries 9-14). This is surprising since decomposition of each pure isomer gives almost exclusively the respective alkene (entries 1 and 2). Thus, it appears that stereochemical drift is accentuated when each diastereomer is present originally to a significant extent. Although such "diastereomeric synergism" in the decomposition of <u>cis</u>- and <u>trans</u>-2 might be reasonable with Li present, since there may be lithium-induced aggregates in solution and since stereochemical drift is enhanced by Li salt (qv. ref 1a and 1c and cf. entries 1 and 3), it is more difficult to comprehend for a lithium salt-free reaction. As expected, the cooperativity between the diastereomers is subject to a concentration effect (entries 12-14), stereochemical drift being diminished at higher dilution where there will be less intermolecular interaction. Mixtures of <u>erythro</u>and <u>threo</u>-3 were deprotonated with NaHMDS at both 23°C and -78°C (entries 10-14); at 0.9 M, less stereochemical drift occurred at the elevated temperature (cf. entries 10 and 12).

Given this unusual result regarding synergism between diastereomers, we re-examined an earlier method 4a for ascertaining the stereochemical composition of Wittig intermediates, one which involves converting the intermediates to β -hydroxyphosphonium salts with HBr. then decomposing such salts to alkenes (in ether) with potassium <u>t</u>-butoxide. We were able to reproduce this type of deprotonation experiment with 1.5 mol-equiv of sublimed KO<u>t</u>Bu, as prescribed; but, mixtures of <u>erythro</u>- and <u>threo</u>-3 yielded alkene mixtures disproportionately enriched in the <u>E</u> alkene when unsublimed or excess KO<u>t</u>Bu was used (entries 15-17).

Based on our kinetic studies^{1C} and the experiments discussed herein (as well as in ref 4), reversibility of cis oxaphosphetanes derived from non-stabilized phosphorus ylides and aromatic aldehydes is much more facile than reversibility of trans oxaphosphetanes. Also, cis and trans oxaphosphetanes interact synergistically (via some yet-undefined mechanism b). during their decomposition to alkenes, to form excessive amounts of E alkene. 7

References and Notes

- 1. (a) Reitz, A. B.; Mutter, M. S.; Maryanoff, B. E. J. <u>Am</u>. <u>Chem</u>. <u>Soc</u>. <u>1984</u>, <u>106</u>, 1873. (b) Maryanoff, B. E.; Reitz, A. B.; Duhl-Emswiler, B. A. <u>Ibid</u>. 1985, <u>107</u>, 217. (c) Maryanoff, B. E.; Reitz, A. B.; Mutter, M. S.; Inners, R. R.; Almond, H. R., Jr. <u>Ibid</u>. 1985, <u>107</u>, 1068. Oxaphosphetanes were previously observed in such Wittig reactions by 40.5-MHz³¹P NMR, as
- 2. sole intermediates (diastereomers unresolved): Vedejs, E.; Meier, G. P.; Snoble, K. A. J. J. Am. Chem. Soc. 1981, 103, 2823.
- Reference 1c, microfilm supplement. 3.
- (a) Schlosser, M.; Christmann, K. F. Justus Liebigs Ann. Chem. 1967, 708, 1. (b) Piskala,
 A.; Rehan, A. H.; Schlosser, M. Coll. Czech. Chem. Commun. 1983, 48, 3539.
 A competition experiment with ylide 1, PhCHO, and 4-chlorobenzaldehyde showed no signifi-4.
- 5. cant difference between reaction rates.
- 6. Since the amount of stereochemical drift is rather small in terms of energetics (less than 0.7 kcal/mol), it is probably unreasonable to construct a detailed mechanistic rationale.
- 7. (a) Studies on solvent- and concentration-dependent effects in the Wittig reaction will be reported separately: Reitz, A. B.; Nortey, S. O.; Maryanoff, B. E., manuscript in preparation. (b) Double-labeling (of both ylide and aldehyde portions) crossover experiments with erythro-3 or threo-3 and erythro-1-hydroxy-1-(4-chlorophenyl)-2-butyltriphenylphosphonium bromide supported the above observations; details will be reported later.

Entry	<u>e-3/t-3</u>	8ase ^b	T (°C)	Conc (M) ^C	<u>Z-4/E-4</u> (% yield)	<u>Z/E</u> for crossover (%)	% PhCHO
1	100:0	NaHMDS	23	0.2	97:3 (92)		3
2	0:100	NaHMDS	23	0.2	0:100 (74)		0
3	100:0	LIHMDS	23	0.2	62:38 (95)		2
4	0:100	LIHMOS	23	0.2	1:99 (72)		0
5 ^đ	100:0	NaHMDS	-78+23	0.1	96:4 (60)	85:15 (16)	18
6 ^d	0:100	NaHMDS	-78+23	0.1	0:100 (90)	(0)	0
7 ^{d,e}	100:0	LIHMDS	-78+23	0.1	96:4 (45)	76:24 (3)	17
8 ^d	0:100	LIHMDS	-78+23	0.1	0:100 (80)	(0)	0
9d	56:44	NaHMDS	-78→23	0.1	41:59 (78)	83:17 (16)	10
10	56:44	NaHMDS	23	0.9	51:49 (74)		
11	56:44	NaHMDS	23	0.02	55:45 (85)		
12 ^f	56:44	NaHMDS	-78→23	0.9	42:58 (74)	-+	~-
13	56:44	NaHMDS	-78→23	0.1	49:51 (57)		
14	56:44	NaHMOS	-78+23	0.02	57:43 (84)		
15	56:44	KO <u>t</u> Bu ^g	23	0.17	54:46 (93) ^h		
16	56:44	к0 <u>t</u> 8u ¹	23	0.17	44:56 (95)		
17	50:50	KOtBu ^{g,j}	23	0.36	32:68 (56)		

Tablea

(a) <u>e</u> and <u>t</u> = <u>erythro</u> and <u>threo</u>. Reactions were conducted in THF, except for those with KO<u>t</u>Bu, which were in ether (entries 15-17). Salts deprotonated at -78°C were stirred for 20 min_before addition of 4-chlorobenzaldehyde. Alkene isomer ratios and yields are from GLC analysis (3% SE-30 on Chromasorb Q) by using Ph_2CH_2 as a reference, except for entries 5-9, which were referenced to the 4-chlorobenzaldehyde (corrected for the small amount consumed). (b) HMDS = hexamethyldisilazide. 1.1 mol-equiv of base was employed for entries 1-14. (c) Based on the amount of salt and solvent, assuming complete deprotonation. (d) This is a crossover experiment; the crossed products are \mathbb{Z}/\mathbb{E} -1-(4-chlorophenyl)-l-pentene. (e) Five independent experiments gave similar results. (f) The isomer ratio is an average of two experiments ($\pm 5\%$). (g) 1.5 mol-equiv of base. (h) No concentration dependence was observed (0.07-0.5 M). (i) 5.0 mol-equiv of base. (j) Unsublimed KO<u>t</u>Bu.